Smart Pullman & WSU Microgrid as part of the PNW Smart Grid Demonstration

Anjan Bose
School of EECS
Washington State University
Pullman, WA 99163

IEEE Northwest Energy Systems Symposium
Seattle, WA
March 2012

Smart Grid Demonstration Project

- Distributed to centralized control
- 3 substations
 - Regulator controls
 - Reclosers/relays
- 13 feeders
 - 45 automated line switches & reclosers
 - 20 switched and fixed capacitor
 - Fault Indicators
 - Low loss transformers w/ telemetry
- Wireless & fiber communications

NW Smart Grid Demonstration Project

Battelle NW
Bonneville Power Administration

Utility Partners
Avista
Benton PUD
City of Ellensburg
Flathead Electric
Idaho Falls Power
Inland Power & Light
Lower Valley Energy
Milton-Freewater
Northeastern Energy
Peninsula Light & PEC
Seattle City Light

DMS – Distribution Management System

- 3 substations
 - Regulator controls
 - Reclosers/relays
- 13 feeders
 - 45 automated line switches & reclosers
 - 20 switched and fixed capacitor
 - Fault Indicators
 - Low loss transformers w/ telemetry
- Wireless & fiber communications
- Grimes Way Generator 1,2 & 3 Dispatch
- Loop Chillers Load Shed
- HVAC Load Shed/EMS/CVR (McKinstry)
- Biotechnology Life-Science Generator Dispatch
- Global Animal Health Backup Power
- College Avenue Steam Plant Automation

Feeder F3 with 38.3R, 39.8C, 21.9I

Average Percentage Demand Savings (EOL=120V)
Feeder F3 with 38.3R, 39.8C, 21.9I

Average Percentage Demand Savings (EOL=119V)

Feeder F3 with 38.3R, 39.8C, 21.9I

Average Percentage Demand Savings (EOL=118V)
Feeder F3 with 38.3R, 39.8C, 21.9I

Average Percentage Demand Savings (EOL=114V)

Average Percentage Demand Savings for July 16, 17, 18, 19

<table>
<thead>
<tr>
<th></th>
<th>EOL = 120 V</th>
<th>EOL = 119 V</th>
<th>EOL = 118 V</th>
<th>EOL=114V</th>
</tr>
</thead>
<tbody>
<tr>
<td>F3 (38.3R, 39.8C, 21.9I)</td>
<td>1.86%</td>
<td>2.64%</td>
<td>3.53%</td>
<td>6.61%</td>
</tr>
<tr>
<td>F6 (56.9R, 43.1C, 0I)</td>
<td>1.60%</td>
<td>2.39%</td>
<td>3.14%</td>
<td>5.85%</td>
</tr>
</tbody>
</table>
18th July 15:15 (peak savings with load = 1650kW)

<table>
<thead>
<tr>
<th>EOL (V)</th>
<th>Tap Setting (for all phases)</th>
<th>Demand (kW) (manual) – with both caps ON</th>
<th>Our results (kW) (simulation) - no caps ON</th>
<th>Diff (kW) (manual – simulation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>-3</td>
<td>4834</td>
<td>4843</td>
<td>9</td>
</tr>
<tr>
<td>119</td>
<td>-4</td>
<td>4805</td>
<td>4814</td>
<td>9</td>
</tr>
<tr>
<td>118</td>
<td>-5</td>
<td>4776</td>
<td>4785</td>
<td>9</td>
</tr>
</tbody>
</table>

18th July, 00:30 (lowest savings with load = 973 kW)

<table>
<thead>
<tr>
<th>EOL (V)</th>
<th>Tap Setting</th>
<th>Demand (kW) (manual) – with both caps ON</th>
<th>Our results (kW) (simulation) - no caps ON</th>
<th>Diff (kW) (manual – simulation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>-4</td>
<td>2895</td>
<td>2884</td>
<td>-11</td>
</tr>
<tr>
<td>119</td>
<td>-5</td>
<td>2877</td>
<td>2861</td>
<td>-16</td>
</tr>
<tr>
<td>118</td>
<td>-6</td>
<td>2860</td>
<td>2837</td>
<td>-23</td>
</tr>
</tbody>
</table>
Preliminary Conclusions

- CVR may save about 3% of energy
- IVVC may not save significant energy
- Automatic and remote switching sectionalizers will improve reliability
- Load control by WSU can provide efficiency on campus (other customers)
- Load control by Avista can provide emergency assist
- Generation control by Avista can provide emergency assist